IPSDK 0.2
IPSDK : Image Processing Software Development Kit
Adaptive Threshold Mean 2dSee full documentation
imageadaptiveThresholdMean2dImg (inImg,halfKnlSize)

Detailed Description

binarize an input image according an adaptive threshold based on the mean intensity of the pixel's neighbourhood

For each pixel, the algorithm computes a threshold according to a neighbourhood described by $InKnlSize$. The computed threshold $T$ is the mean intensity along the pixel's neighbourhood $\aleph$ :

\[ T(x, y) = \frac{1}{N} \sum_{(i, j) \in \aleph}{InImg(x+i, y+j)} \]

Where $N$ is the number of pixels in $\aleph$.

This algorithm is equivalent to the Adaptive Threshold 2d binarization algorithm, with each kernel coefficient set to $1/N$. However, it is optimized to compute a mean adaptive threshold based binarization and yields better performances.

Note
To avoid a noisy binarization, it is advised to filter the input image with a median filter before computing the binarization.

Here is an example of an adaptive image thresholding applied to a 8-bits grey level image, with a kernel size of 5 ( $InKnlSize=2$) :

adpativeThresholdMean2dImg.png

Example of Python code :

Example imports

import PyIPSDK
import PyIPSDK.IPSDKIPLBinarization as bin

Code Example

# opening of input images
inImg = PyIPSDK.loadTiffImageFile(inputImgPath)
# threshold computation with a given kernel
outImg = bin.adaptiveThresholdMean2dImg(inImg, halfKnlSize)

Example of C++ code :

Example informations

Header file

#include <IPSDKIPL/IPSDKIPLBinarization/Processor/AdaptiveThresholdMean2dImg/AdaptiveThresholdMean2dImg.h>

Code Example

// Loading the input image
// ------------------------------------
ImagePtr pInImg = loadTiffImageFile(inputPath);
// Sample with a generated output image
// ------------------------------------
// compute absolute value of input image
ImagePtr pAutoOutImg = adaptiveThresholdMean2dImg(pInImg, halfKnlSize);
// Sample with a provided output image
// -----------------------------------
// Retrieve the input image size
const ipUInt64 sizeX = pInImg->getSizeX();
const ipUInt64 sizeY = pInImg->getSizeY();
// create output image
ImageGeometryPtr pOutputImageGeometry = geometry2d(eImageBufferType::eIBT_Binary, sizeX, sizeY);
boost::shared_ptr<MemoryImage> pOutImg(boost::make_shared<MemoryImage>());
pOutImg->init(*pOutputImageGeometry);
// compute absolute value of input image
adaptiveThresholdMean2dImg(pInImg, halfKnlSize, pOutImg);