initialization of an image with random values generated using a normal law
This algorithm allows to fill an image with random sampled values. The pixel intensities follow a normal law defined by the given mean and standard deviation stored in an ipsdk::imaproc::attr::GaussianParameter attribute.
Example of Python code :
Example imports
import PyIPSDK
import PyIPSDK.IPSDKIPLUtility as util
Code Example
img = PyIPSDK.createImage(PyIPSDK.eImageBufferType.eIBT_UInt8, 510, 509)
mean = 100
stdDev = 25
util.gaussianRandomImg(PyIPSDK.createGaussianParameter(mean, stdDev), img)
Example of C++ code :
Example informations
Header file
#include <IPSDKIPL/IPSDKIPLUtility/Processor/GaussianRandomImg/GaussianRandomImg.h>
Code Example
boost::shared_ptr<MemoryImage> pImg(boost::make_shared<MemoryImage>());
pImg->init(*pImageGeometry);
gaussianRandomImg(pGaussianParameter, pImg);