image = | pearsonColocalization3dImg (inImg3d1,inImg3d2) |
builds the Pearson's colocalization map computing the Pearson correlation coefficient on each voxel
The Pearson colocalization, also known as Pearson correlation coefficient, is a linear correlation measure between the two input images InImg3d1 and InImg3d2. The result is a Real32 image where intensities belong to the range
.
The Pearson correlation coefficient at each voxel is calculated with the following formula :
Where
is the voxel coordinate vector,
is the mean intensity of
and
is its standard deviation.
See Pearson colocalization mapping 2d for an illustration of Pearson colocalization mapping in two dimensions.
- See also
- https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
Example of Python code :
Example imports
import PyIPSDK
import PyIPSDK.IPSDKIPLFiltering as filter
Code Example
outAutoImg = filter.pearsonColocalization3dImg(inImg1, inImg2)
outImg = PyIPSDK.createImage(PyIPSDK.eImageBufferType.eIBT_Real32, inImg1.getSizeX(), inImg1.getSizeY(), inImg1.getSizeZ())
filter.pearsonColocalization3dImg(inImg1, inImg2, outImg)
Example of C++ code :
Example informations
Header file
#include <IPSDKIPL/IPSDKIPLFiltering/Processor/PearsonColocalization3dImg/PearsonColocalization3dImg.h>
Code Example
ImagePtr pAutoOutImg = pearsonColocalization3dImg(pInImg1, pInImg2);
boost::shared_ptr<MemoryImage> pOutImg(boost::make_shared<MemoryImage>());
pOutImg->init(*pOutputImageGeometry);
pearsonColocalization3dImg(pInImg1, pInImg2, pOutImg);