IPSDK 0.2
IPSDK : Image Processing Software Development Kit
Pearson Correlation Coefficient 3dSee full documentation
scalarpearsonCorrelationCoefficient3d (inImg3d1,inImg3d2)

Detailed Description

computes the Pearson correlation coefficient in the 3d image

The Pearson correlation coefficient, also known as Pearson colocalization, is a linear correlation measure between the two input images InImg3d1 and InImg3d2. This coefficient is calculated with the following formula :

\[ PCC = \sum_{\textbf{x} \in \Omega}{\frac{ \left( InImg3d1[\textbf{x}] - \mu_1\right) \left( InImg3d2[\textbf{x}] - \mu_2\right)}{\sigma_1 \sigma_2}} \]

Where $\Omega$ is the image domain, $ \mu_i, i \in [1, 2]$ is the mean intensity of $InImg_i$ and $\sigma_i$ is its standard deviation.

Two wrappers can be called : the pearsonCorrelationCoefficient3d wrapper is only used to compute the Pearson coefficient on a grey level 3d image, whereas the multiSlice_pearsonCorrelationCoefficient3d wrapper must be used for more complex data (sequence and/or color). In the second case, a coefficient is calculated for each 3d volume forming the input images.

This algorithm is the 3d version of Pearson Correlation Coefficient 2d.

See also
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Example of Python code :

Example imports

import PyIPSDK
import PyIPSDK.IPSDKIPLGlobalMeasure as glbmsr

Code Example

# Sample a single slice result
result = glbmsr.pearsonCorrelationCoefficient3d(inImg1, inImg2)
# Sample a multislice result
multislice_result = glbmsr.multiSlice_pearsonCorrelationCoefficient3d(inImg1, inImg2)

Example of C++ code :

Example informations

Header file

#include <IPSDKIPL/IPSDKIPLGlobalMeasure/Processor/PearsonCorrelationCoefficient3d/PearsonCorrelationCoefficient3d.h>

Code Example

// --------------------------------- Compute the Pearson colocalization a mono-slice grey level image ---------------------------------- //
const ipReal64 pearsonCorrCoeff = pearsonCorrelationCoefficient3d(pInImg1, pInImg2);
// ----------------------------------------------- Calculation on a multi-slice RGB image ---------------------------------------------- //
PlanIndexedPearsonCCResultPtr pPearsonCorrCoeff_MultiSlice = multiSlice_pearsonCorrelationCoefficient3d(pImg1_multiSlice, pImg2_multiSlice);