image = | pixelClassificationRFImg (inImg,model) |
image = | pixelClassificationRFImg (inImg,model,inOptMemoryRatio) |
outImg,outRealImg = | pixelClassificationRFWithProbabilitiesImg (inImg,model) |
outImg,outRealImg = | pixelClassificationRFWithProbabilitiesImg (inImg,model,inOptMemoryRatio) |
Compute Random Forest pixel classification.
This algorithm allows to classify pixels on an image, by using the random forest algorithm on a trained model
It the model contains two, the output image will be binary, otherwise it will be labeled. The function will first compute all the features, then apply the random forest algorithm. If the features are already compute, they can be given in a sequence image, instead of the input image.
See Smart segmentation module for more details about the model creation.