xGradImg,yGradImg,zGradImg = | sobelGradient3dImg (inImg) |
xGradImg,yGradImg,zGradImg = | sobelGradient3dImg (inImg,kernelType,bNormalize) |
image = | sobelXGradient3dImg (inImg) |
image = | sobelXGradient3dImg (inImg,kernelType,bNormalize) |
image = | sobelYGradient3dImg (inImg) |
image = | sobelYGradient3dImg (inImg,kernelType,bNormalize) |
image = | sobelZGradient3dImg (inImg) |
image = | sobelZGradient3dImg (inImg,kernelType,bNormalize) |
Compute X, Y and Z gradients of an input image convolving it with 3d Sobel kernels.
3d Sobel kernels are separable, they can be decomposed as the product of 3 vectors. X gradient kernel equals to the product , Y gradient kernel equals to the product
, and Z gradient kernel equals to the product
. Depending on the value of parameter
(default value: eSKT_SobelHalfKnlSz1), smoothing and derivative vectors equal to:
,
if
equals to eSKT_SobelHalfKnlSz3
has the default value
. When the user sets this parameter to the value
, only the smoothing part of the 2d kernel is normalized.
To handle image borders, a mirror extrapolation is used (see Border policy for more details).
Here is an example of a Sobel gradient applied to an 8-bits grey levels input image with default parameters used: